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Abstract—Applications where multiple users communicate
with a common server and desire low latency are common and
increasing. This paper studies a network with two source nodes,
one relay node and a destination node, where each source nodes
wishes to transmit a sequence of messages, through the relay, to
the destination, who is required to decode the messages with a
strict delay constraint T . The network with a single source node
has been studied in [1]. We start by introducing two important
tools: the delay spectrum, which generalizes delay-constrained
point-to-point transmission, and concatenation, which, similar to
time sharing, allows combinations of different codes in order to
achieve a desired regime of operation. Using these tools, we are
able to generalize the two schemes previously presented in [1],
and propose a novel scheme which allows us to achieve optimal
rates under a set of well-defined conditions. Such novel scheme is
further improved in order to achieve higher rates in the scenarios
where the conditions for optimality are not met.

I. INTRODUCTION

A number of emerging applications including online real-
time gaming, real-time video streaming (video conference
with multiple users) and healthcare (under the name tactile
internet) require efficient low-latency communication. In these
applications, data packets are generated at the source in a
sequential fashion and must be transmitted to the destination
under strict latency constraints. When packets are lost over the
network, significant amount of error propagation can occur and
suitable methods for error correction are necessary.

There are two main approaches for error correction due to
packet losses in communication networks: Automatic repeat
request (ARQ) and Forward error correction (FEC). ARQ is
inherently inferior when considering low latency constraints,
especially for long distance communication, and, for that rea-
son, FEC schemes are considered more appropriate candidates.
The literature has studied codes with strict decoding-delay
constraints—called streaming codes—in order to establish fun-
damental limits of reliable low-latency communication under
a variety of packet-loss models. Previous works have studied
particular, useful cases. In [2], the authors studied a point-to-
point (i.e., two nodes—source and destination) network under
a maximal burst erasure pattern. In [3], the authors have
studied, separately, burst erasures and arbitrary erasures. In
[4], the authors have extended the erasure pattern, allowing
for both burst erasures and arbitrary erasures. In particular,
it was shown that random linear codes [5] are optimal if we
are concerned only with correcting arbitrary erasures. Other

works that have further studied various aspects of low-latency
streaming codes include [6]–[14].

While most of the prior work on streaming codes has
focused on a point-to-point communication link, a network
topology that is of practical interest involves a relay node
between source and destination, that is, a three-node network.
This topology is motivated by numerous applications in which
a gateway server, able to decode and encode data, connects
two end nodes. Motivated by such considerations, streaming
codes for such a setting were first introduced in [1] and further
extended to a multi-hop network in [15].

However, a significant part of the mentioned applications,
such as real-time gaming and video conferences, involve
communications between multiple users and a common server.
Motivated by such applications, in this paper we extend the
relayed topology of [1] for a multiple access relay channel
(MARC). We focus on the case with two source nodes in
this paper, but it should be noted that the proposed schemes
and the converse can be directly extended to multiple source
nodes, although the expressions become hard to evaluate. We
focus our analysis on the scenario where the link connecting
the relay and the destination represents the bottleneck, and
we study the achievable rate region under such topology. This
analysis is extended to any scenario in the full paper [16],
where it can be seen that the scenario studied in this paper is
the most challenging one. The proofs are omitted in this paper
due to space limitations, but are presented in [16].

A. Main contributions

In this paper, considering a network with few assumptions
on the parameters, we
• Develop a generalization of the concept of the delay spec-

trum of point-to-point codes and present an achievable
delay spectrum for such codes.

• Present an upper bound on the achievable rate region of
the two-user MARC under arbitrary erasures with a strict
delay constraint T .

• Present a time-sharing-like tool for symbol-wise decode-
and-forward (SWDF) streaming codes for the MARC.

• Propose two schemes using the tools we have developed:
Concatenated SWDF (CSWDF) and Fixed Bottleneck
SWDF (FB-SWDF). Further, we propose to use the time-
sharing tool in order to obtain a result better than the
maximum between both.
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Fig. 1: Multiple Access Relay Channel

• Derive the conditions for the upper bound to be achiev-
able using our proposed schemes.

• Compare the proposed schemes to a naive solution, or
baseline scheme, denoted as Concatenated Message-Wise
Decode-and-Forward (CMWDF), and demonstrate that
our proposed scheme significantly outperforms the naive
solution in terms of achievability.

In [16], we further extend the analysis and proposed schemes
to remove the aforementioned assumptions, and we also
present an improvement, denoted as Optimized Bottleneck
SWDF (OB-SWDF), which improves upon FB-SWDF.

II. PRELIMINARIES

In this paper, we consider a network with two sources, one
relay and one destination. Each source i wishes to transmit a
sequence of messages {st,i}∞t=0 to the destination through a
common relay. We assume that there is no direct link between
sources and destination, which is an important distinction to
the classic MARC (see, e.g., [17]). We assume that the link
between the ith source and the relay introduces at most Ni

erasures, and the link between relay and destination introduces
at most N3 erasures. The destination wishes to decode both
source packets with a common delay T . This setting is
illustrated in Fig. 1. Finally, we assume no processing or
transmission delay (all operations happen at the same time
instant) and the time-slots are synchronized across all nodes.

In the following, we present the formal definitions for
the problem. For simplicity, we define Fn

e = Fn ∪ {∗}.
The following definitions are standard and a straight-forward
generalization of [1].

Definition 1. An (n1, n2, n3, k1, k2, T )F-streaming code con-
sists of the following:
• Two sequences of source messages {st,1}t=∞t=0 and
{st,2}t=∞t=0 , where st,i ∈ Fki .

• Two encoding functions ft,i : Fki × · · · × Fki︸ ︷︷ ︸
t+1 times

→

Fni , i ∈ {1, 2} each used by its respective source i

at time t to generate x
(1)
t,i = ft,i(s0,i, s1,i, . . . , st,i).

• A relaying function gt :
Fn1
e × · · ·Fn1

e︸ ︷︷ ︸
t+1 times

×Fn2
e × · · ·Fn2

e︸ ︷︷ ︸
t+1 times

→ Fn3 used by the relay

at time t to generate x
(2)
t = gt({y(1)j,1}tj=0, {y

(1)
j,2}tj=0).

• Two decoding functions (i ∈ {1, 2}): ϕt+T,i =
Fn3
e × · · · × Fn3

e︸ ︷︷ ︸
t+T+1 times

→ Fki used by the destination

at time t + T to generate two estimates ŝt,i =

ϕt+T,i(y
(2)
0 , y

(2)
1 , . . . , y

(2)
t+T ).

Definition 2. An erasure sequence is a binary se-
quence denoted by e∞ , {et}∞t=0, where et =
1{an erasure occurs at time t}. An N -erasure sequence is an
erasure sequence e∞ that satisfies

∑∞
t=0 e

∞
t = N . The set of

N -erasure sequences is denoted by ΩN .

Definition 3. The mapping hn : Fn × {0, 1} → Fn
e of an

erasure channel is defined as hn(x, e) =

{
x, if e = 0

∗, if e = 1
.

For any erasure sequence e∞ and any
(n1, n2, n3, k1, k2, T )F-streaming code, the following input-
output relation holds for each t ∈ Z+: y

(1)
t,1 = hn1(x

(1)
t,1 , e

(1)
t,1 )

and y
(1)
t,2 = hn2(x

(1)
t,2 , e

(1)
t,2 ), where e

(1)
t,i ∈ ΩNi

, i ∈ {1, 2}.
Similarly, the following input-output relation holds for for
each t ∈ Z+: y(2)t = hn3(x

(2)
t , e

(2)
t ), where e

(2)
t ∈ ΩN3 .

Definition 4. An (n1, n2, n3, k1, k2, T )F-streaming code is
said to be (N1, N2, N3)-achievable if, for any e

(1)
t,i and e

(2)
t ,

for all t ∈ Z+ and all st,i ∈ Fki , we have ŝt,i = st,i.

Definition 5. The pair of rates of an (n1, n2, n3, k1, k2, T )F-
streaming code is (R1, R2) =

(
k1

n , k2

n

)
, where n =

max(n1, n2, n3).

Definition 6. The capacity rate region of an (N1, N2, N3)-
MARC network under delay constraint T is defined as
the set of all rate pairs (R1, R2) such that there exists
an (N1, N2, N3)-achievable (n1, n2, n3, k1, k2, T )F-streaming
code, where (R1, R2) are defined as above.

A. Upper bound

In this section, we use the results in [1] to present a simple
upper bound on the achievable rate region. We denote by
C(T,N) = T+1−N

T+1 the capacity of a single-link point-to-
point channel [4]. For the remaining of the paper, we always
refer to single-link codes. Since each user is transmitting its
own message without cooperation, R1 ≤ C(T − N3, N1)
and R2 ≤ C(T − N3, N2) are direct extensions from [1].
Furthermore, we can optimistically consider N2 erasures in
both links in the first hop, and obtain the following upper
bound on the sumrate: R1 + R2 ≤ C(T −N2, N3).

In this paper, we make the following assumptions, which
guarantee the desired regime of operation:

• N1

(a)

≥ N2 ≥ N3. (a) is without loss of generality.
• T ≥ 1

2

(√
N2

1 − 4N3(N2 −N3) + N1 + 2N2 − 2
)

.

In other words, these assumptions are required in order to all
the bounds described in this section to be active at some point
in the rate region. In [16], we analyze the different regimes of
operation that may occur from the lack of such assumptions.
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III. MOTIVATING EXAMPLE

Before we introduce the general schemes and results, let
us consider an example which compares the schemes that are
going to be presented in this paper. Let us consider a network
with N1 = 3, N2 = 2, N3 = 1 and T = 6. Further, let us
assume we wish to allow the first user (i.e., source node i = 1)
to transmit at its maximal rate R1 = C(T − N3, N1) = 0.5.
Such rate is certainly achievable from [1], if the second user
does not transmit. Then, we attempt to answer the following
question: what is the best rate the second user can achieve
without interfering with the first user? In this section, we will
see the answer to that question using each one of the schemes,
which will be described in Section V.

First, what is the fundamental limit? By simply applying the
upper bound, we get R2 ≤ 4

5 −
3
6 = 0.3. Now, let us see what

we can, in fact, achieve. Under CMWDF, the first user would
transmit with k = 3, n1 = 6, and it would require n3 = 6 from
the second hop.It should be easy to see that, therefore, there
is no remaining “gap” for the second user, and, indeed, using
CMWDF, if we have R1 = 0.5 in this network, the second
user is unable to transmit. These parameters come from finding
the best T ′ for R1 = min (C(T ′, N1), C(T − T ′, N3)) [1].

On the other hand, under CSWDF, the first user would use
k′ = 3, n′1 = 6, but the relay can transmit using only n′3 = 4.
These “base” codes are the codes that achieve C(T −N3, Ni)
[1]. Therefore, there is some gap, and we can use this gap
to transmit more symbols from the second user. In fact, by
employing 5 concatenations of the mentioned code, we would
have k1 = 15, n1 = 30, n3 = 20. Then, we can include two
concatenations of the single-user streaming code of the second
user, which has parameters k′′ = 4, n′′2 = 6, n′′3 = 5, thus,
forming a code with parameters k2 = 8, n2 = 12, n3 = 10.
Finally, by concatenating both codes in the relay, we have
n3 = 30, which is clearly larger than both n1 and n2, thus,
we define it as n. Finally, we have R1 = 15/30 = 0.5 and
R2 = 8/30 = 0.2667. While this is significantly better than
CMWDF, there is still some gap to the upper bound.

Finally, let us consider a slightly more complex streaming
code, which is the result of our FB-SWDF scheme: for the
first user, we will use 5 concatenations of the single-user
capacity-achieving code, thus we get k1 = 15, n1 = 30.
Among these 15 symbols, the relay can recover each 5 with
delays 3, 4 and 5. Now, for the second user, let us consider
the following strategy: k2 = 9, n2 = 27, which is obtained
with 9 concatenations of a (3, 1) code. The relay can recover
all the 9 symbols transmitted by this source-node with delay
2. Finally, the relay can employ a code with k = 24 and
n3 = 30, which can transmit each 6 symbols with delays from
1 to 4, and can be obtained with 6 concatenations of (5, 4)
codes. Then, we match the delays of the symbols according
to Table I. Finally, note that we have R1 = 15/30 = 0.5 and
R2 = 9/30 = 0.3, that is, our scheme is able to achieve the
upper bound. Note that, in this case, all codes used are simple
diagonal interleaving MDS codes [4], however, it required us
to “merge” the streams transmitted by each user in the relay,

TABLE I: Number of symbols transmitted with each delay in
each hop. Blue symbols are transmitted by the first user, while
green symbols are transmitted by the second user.

T in the first hop
T in the second hop 1 2 3 4

2 1 1 1 6
3 5
4 5
5 5

which previous schemes are unable to do, and requires an in-
depth analysis of the delay spectrum of point-to-point codes,
developed in this paper. Such merging can be seen in the table,
where some symbols transmitted by user 2 are retransmitted
in the remaining one slot along the symbols from user 1.

IV. SYMBOL-WISE DECODE AND FORWARD AND DELAY
SPECTRUM

In order to present our coding scheme, first let us define
the notion of delay spectrum for a point-to-point code. This
notion exists and is mentioned in [1], however, in that paper,
the authors define the delay spectrum through the delay profile
of a streaming code. In this paper, we define it for any point-to-
point code. Further, we make an in-depth analysis of said delay
spectrum, which has not been made before. Similar analysis
has been done in works such as [18], where a source wishes
to transmit two streams with different delays to a destination,
however, we generalize it for any number of different streams
and delays, focusing on the arbitrary erasure channel.

Definition 7. An (n, k,T)F point-to-point code, where T =
[T [1], . . . , T [k]] is the delay spectrum of the code, consists of:

1) A streaming message {st}∞t=0 and an encoder [4].
2) A list of k decoding functions ϕt+T [j] = Fn

e × · · ·Fn
e︸ ︷︷ ︸

t+T [j]+1 times

→

Fk used by the receiver at time t+T [j] to generate ŝt[j],
that is, an estimate of the jth element of st.

Definition 8. An (n, k,T)F point-to-point code is said
to achieve T under N erasures if, for any e′t ∈ ΩN ,
ϕt+T [j](hn(x0, e

′
0), . . . , hn(xt+T [j], e

′
t+T [j])) = st[j].

For the relaying strategy, let us now introduce the concept
of SWDF. In this strategy, the relaying function employed by
the code first decodes the source packets transmitted by the
source, and then encodes them again. This is an extension of
the SWDF defined in [1] for the three-node network. However,
the addition of a second source node adds some nuances to
the strategy, as the messages relayed by the relay now must
be multiplexed in some way. Below, we broadly define this
strategy. A more complete definition can be found in [16].

Definition 9. Assume the source nodes transmit their source
messages {st,i}∞t to the relay using an (ni, ki,T

(1)
i )F point-

to-point code. Then, a relay is said to employ a SWDF if it
also uses a point-to-point code, and each symbol used as a
message symbol by the relay is the relay’s delayed estimate of
a source symbol from any of the two source nodes.
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For the remaining of the paper, we use T
(1)
i to denote the

delay spectrum of the code used by the source node i and
T(2) to denote the delay spectrum of the code employed by
the relay. It is easy to see that, using the SWDF strategy, the
overall delay of a symbol with delay T

(1)
s in the first hop and

T
(2)
s in the second hop is given by Ts = T

(1)
s + T

(2)
s .

Furthermore, we define a concatenation of point-to-point
codes. Again, a more complete definition is given in [16].

Definition 10. A concatenation of an (n′, k′,T′)F point-to-
point code with an (n′′, k′′,T′′)F point-to-point code is an
(n′ + n′′, k′ + k′′, [T′,T′′]) point-to-point code where the
encoding and decoding functions are concatenations of the
functions of the original codes.

Furthermore, it should be clear that, if such codes achieve
the delay spectra T′ and T′′ under N erasures, the concate-
nated code achieves the delay spectrum [T′,T′′] as well. This
is formally stated and proven in [16].

Another useful operation that can be made is simply permut-
ing the source symbols, and it should be clear that permuting
the source symbols results in permuting the delay spectrum.
Again, this is formally stated and proven in [16]. Then, since
any permutation of an achievable delay spectrum is also
achievable, we may describe the delay spectrum of a code by
stating how many symbols are transmitted with some delay.

Definition 11. Consider a delay spectrum T =
[T [1], T [2], . . . , T [k]]. An equally-delayed symbols grouping
description of such delay spectrum is given by a list of
tuples G = [(T (g)[1], k(g)[1]), . . . , (T (g)[`(g)], k(g)[`(g)])],
where `(g) is the length of the list. For simplicity,
we assume T (g)[1] ≥ T (g)[2] ≥ · · · ≥ T (g)[`(g)].
Furthermore, we define T(g) = [T (g)[1], . . . , T (g)[`(g)]]

and k(g) = [k(g)[1], . . . , k(g)[`(g)]], where
∑`(g)

i=1 k
(g)[i] = k.

A. Point-to-point results for delay spectrum
In this Section, we present an achievability result for point-

to-point codes in terms of delay spectrum.

Lemma 1 (Achievability). Let

T(g) =
[
T (g)[1], T (g)[2], . . . ,

T (g)[`(g)]] = [T (g)[1], T (g)[1]− 1, . . . , N + 1, N
]

and n−k
N be an integer. Then, there exists an (n, k,T)F point-

to-point code that can transmit k(g)[1] = n − T (g)[1]
N (n − k)

symbols with delay T (g)[1] and k(g)[j] = n−k
N ∀j ≥ 2.

The code that achieves such delay spectrum is a concatena-
tion of two diagonal interleaving MDS codes [4]. The details
of the code construction can be found in the proof in [16].

Lemma 1 can be used to derive the following corollary:

Corollary 1. Assume that k(g) ≤ kcon is a constraint. If

k ≤ n− n ·N ·

(
1−

∑j−1
`=1

kcon[`]
n

)
T (g)[j] + 1

∀j ∈ {1, 2, . . . , `(g)}

(1)

there exists an (n, k,T)F point-to-point code that achieves the
desired delay spectrum T(g) under N erasures.

V. ACHIEVABLE RATE REGION

In this section, we present lower bounds on the capacity
rate region. We first describe FB-SWDF, in which the relay-
destination link (the bottleneck) attempts to transmit at its
maximal rate. We then present a time-sharing-like tool, which
defines that from any two streaming codes, another streaming
code can be derived with achievable rates which are at least
a convex combination of both rates. Further, this tool can be
used to extend schemes used over a three-node network.

We note that the one such extension denoted by CSWDF
is able to partially outperform FB-SWDF (which is due to
the attempt of FB-SWDF to transmit at maximal rate in
the relay-destination link). Therefore, the achievable region
we characterize is the outcome of applying “time-sharing”
between CSWDF and FB-SWDF.

A. FB-SWDF

For this scheme, we use the point-to-point results derived
earlier and analyze the achievable rate region using symbol-
wise decode and forward. The following Theorem describes
the rate region achieved by employing SWDF in conjunc-
tion with the results described in Section IV. Specifically,
this scheme attempts to use a point-to-point code with rate
Rbn = C(T −N2, N3) in the relay-destination link. Then, in
order to achieve R1, it starts by employing a code with rate
R1 = C(T −N3, N1), and then erasing information symbols
from this code. In all codes, we use n = (T + 1 −N3)(T +
1−N −2)c, where c is an auxiliary constant. It can be shown
through Lemma 1 that, by employing such codes, there are

R1·n
T+1−N1−N3

symbols with delays {N1, N1 + 1, . . . , T −N3}
being transmitted through the link with N1 erasures, while
the relay can transmit up to Rbn·n

T+1−N2−N3
symbols with delays

{N3, N3 + 1, . . . , T −N2}. Then, we employ Corollary 1 in
order to find the maximum achievable R2, using, as constraint,
the number of symbols that can still be transmitted through the
bottleneck. The role of the auxiliary constant c is to guarantee
that the number of symbols in each timeslot is integer.

Theorem 1. For any R1, the following rate is achievable

R2 =
min (C(T −N3, N2),

C(T −N2, N3)− C(T −N3, N1), R′2)
(2)

R′2 =
N2

N1

[
N1

N2
− 1−R1 +

T + 1−N1 −N3

T + 1−N2

]
. (3)

In particular, the Theorem leads to the following Corollary,
which presents a sufficient condition for the sumrate capacity
to be achieved in at least one point, and the two corner points
in which the capacity sumrate is achieved.

Corollary 2. If (T + 1 − N3)(T + 1 − N2 − N1) ≥
(T + 1 − N3 − N1)(N2 − N3), then the sumrate capacity
R1 + R2 = C(T − N2, N3) is achieved at at least
one point of the rate region, which is (R1, R2) =
(C(T −N3, N1), C(T −N2, N3)− C(T −N3, N1)).
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Further, the rate pair (R1, R2) =
(

N2−N3

T+1−N2
, T+1−2N2

T+1−N2

)
is also achievable.

B. Time-sharing Tool

In this section, we present the time-sharing-like tool men-
tioned previously. In particular, using this tool, combined with
the two points from Corollary 2, allows us fully characterize
the part of the region in which we achieve the capacity.

Furthermore, using the following Lemma, we can extend
the schemes presented in [1] and, generally, show that if any
two points are achievable, (practically) any linear combination
between such two points is also achievable.

Lemma 2. For SWDF (see Definition 9): if an
(n1, n2, n3, k1, k2, T )F and an (n′1, n

′
2, n
′
3, k
′
1, k
′
2, T )F

streaming codes are (N1, N2, N3)-achievable, there exists an
(N1, N2, N3)-achievable (An1 + Bn′1, An2 + Bn′2, An3 +
Bn′3, Ak1 +Bk′1, Ak2 +Bk′2, T )F streaming code ∀A,B ∈ Z.

1) Concatenated Symbol-wise Decode-and-forward: Recall
that, as shown in [1], the following streaming codes are
(N1, N2, N3)-achievable: (T + 1 − N3, 0, T + 1 − N1, T +
1−N1−N3, 0)F and (0, T + 1−N3, T + 1−N2, 0, T + 1−
N2 − N3)F. The CSWDF simply uses 2 with these codes.
In particular, the following pair of rates is, to the best of
our knowledge, the best achievable rate for R1 such that
R2 = C(T −N3, N2) and can be obtained using CSWDF.

Lemma 3. For R2 = C(T − N3, N2), the following R1 is
achievable

R1 =
(T + 1−N3 −N1)(N2 −N3)

(T + 1−N1)(T + 1−N3)
(4)

using diagonal interleaving MDS code.

2) Concatenated Message-wise Decode-and-forward: Sim-
ilar to the CSWDF, we can apply Lemma 2 to the message-
wise decode-and-forward scheme1 presented in [1]. A full
description of the scheme can be found in [16].

VI. RESULTS

In this section, we present the rate region for two different
scenarios. In both cases, the curves are labeled according to the
scheme presented in each respective section previously. The
curve labeled as “Time Sharing” in Fig 2 represents the best
achievable region for which we have closed form expressions.

We also present the results for the OB-SWDF scheme,
which is fully described in [16]. Briefly, this scheme optimizes
over the rate of the point-to-point code used in the second hop,
in contrast to the fixed rate used by FB-SWDF. By doing that,
we are able to improve the achievable rate in the scenarios
where FB-SWDF is unable to achieve the upper bound.

In the first scenario, we have a small T , such that the
condition in Corollary 2 is not met. This is presented in Fig. 2.
Note that, in this case, no scheme is able to achieve the
sumrate. By slightly increasing T , we are able to achieve the

1Recall that message-wise decode-and-forward is a particular case of
SWDF, thus Lemma 2 can be applied.
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sumrate capacity in a noticeable part of the capacity region,
which is shown in Fig. 3. Note that, in this case, the message-
wise scheme is unable to achieve even the single-user capacity
for R2, which is also shown in [1].

Furthermore, in both cases, it can be seen that CSWDF
is able to achieve the optimal point for maximal R2. This
has been observed in all settings we have experimented, and,
although it remains to be proven, it suggests that the “Time
Sharing” scheme represents a good achievable rate, for which
we have closed form expressions. In fact, as in Fig. 3, it can
achieve the same performance as OB-SWDF.

Although our schemes are unable to always achieve the
sumrate, and unable to achieve the entire rate region, com-
paring them to the alternative—CMWDF—should show that
the proposed schemes are significantly superior.
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